
NOTES ON HOPF MODULES, INTEGRALS AND FROBENIUS HOPF
ALGEBRAS.

PAOLO SARACCO

1. Hopf modules and the structure theorem

Let k be a commutative ring and denote by M the category of k-modules and their
morphisms. In this section, B will be a bialgebra.

Definition 1.1. A (right) Hopf module over B is a k-module M with a B-action µ :
M ⊗B → B : m⊗ b 7→ m · b and a B-coaction δ : M →M ⊗B : m 7→ ∑

m[0] ⊗m[1] such
that

δ (m · b) = δ (m) · b,
that is to say, ∑

(m · b)[0] ⊗ (m · b)[1] =
∑

m[0] · b(1) ⊗m[1]b(2)

for all m ∈M , b ∈ B. A morphism of Hopf modules is a B-linear, B-colinear map between
them. The category of Hopf modules over B and their morphisms will be denoted by MB

B.

Example 1.2. Let V be a k-module and consider V ⊗B with structures
(v ⊗ b) · b′ := v ⊗ bb′ and δ (v ⊗ b) :=

∑(
v ⊗ b(1)

)
⊗ b(2)

for all v ∈ V , b ∈ B. Then V ⊗B is a Hopf module, since
δ (v ⊗ bb′) =

∑(
v ⊗ b(1)b

′
(1)

)
⊗ b(2)b

′
(2) =

∑(
v ⊗ b(1)

)
· b′(1) ⊗ b(2)b

′
(2) = δ (v ⊗ b) · b′

for all v ∈ V , b ∈ B.When we would like to stress the particular actions or coactions we are
using, we may denote it by V ⊗B•• as well.

Lemma 1.3. The assignment −⊗B : M→MB
B acting on objects as V 7→ V ⊗B and on

morphisms as f 7→ f ⊗B is functorial.

Proof. Exercise �

Definition 1.4. Given a coalgebra C and a C-comodule N , the k-module
N coC := {n ∈ N | δ (n) = n⊗ 1}

is called the module of coinvariant elements (or simply the module of coinvariants).
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Proposition 1.5. The assignment (−)coB : MB
B → M acting on object via M 7→ M coB

and on morphisms by sending f : M → N to its (co)restriction f coB : M coB → N coB is
functorial and it is right adjoint to the functor −⊗B of Lemma 1.3. Unit and counit are
given by

ηV : V → (V ⊗B)coB , v 7→ v ⊗ 1,
εM : M coB ⊗B →M,

∑
i

mi ⊗ bi 7→
∑
i

mi · bi.

Moreover, η is always a natural isomorphism and hence −⊗B is full and faithful.

Proof. First of all, let f : M → N be a morphism of Hopf modules and consider m ∈M coB.
Then

δN (f (m)) =
∑

f (m)[0] ⊗ f (m)[1] =
∑

f
(
m[0]

)
⊗m[1] = f (m)⊗ 1,

so that f (m) ∈ N coB. As a consequence, f induces f coB : M coB → N coB as in the statement.
It is not difficult to check that the given assignments provide a well-defined functor. To
show that it is right adjoint to −⊗B, let us check the two triangular identities:

εcoB
M (ηM coB (m)) = εcoB

M (m⊗ 1) = m,

εV⊗B
(
(ηV ⊗B)

(∑
vi ⊗ bi

))
= εV⊗B

(∑
(vi ⊗ 1)⊗ bi

)
=
∑

vi ⊗ bi,

whence both compositions give an identity morphism and the verifications are complete.
Concerning the last claim, notice that for every ∑ vi ⊗ bi ∈ (V ⊗B)coB we have∑

vi ⊗ bi(1) ⊗ bi(2) =
∑

vi ⊗ bi ⊗ 1.

By applying V ⊗ ε⊗B to both sides of the latter relation, we get∑
vi ⊗ bi =

∑
viε (bi)⊗ 1.

Therefore, the following computations,
(V ⊗ ε) (ηV (v)) = (V ⊗ ε) (v ⊗ 1) = v and

ηV
(
(V ⊗ ε)

(∑
vi ⊗ bi

))
= ηV

(∑
viε (bi)

)
=
∑

viε (bi)⊗ 1 =
∑

vi ⊗ bi,

show that V ⊗ ε is the two-sided inverse of ηV for every V ∈ M. The additional fact
that −⊗B is full and faithful is a direct consequence of the invertibility of η (see [7] for
additional details on this property). �

In general, however, εM is not an isomorphism, as the following example shows.

Example 1.6. Consider B := k [X], the polynomial bialgebra with ∆ (X) = X ⊗ X
and ε (X) = 1. A module over B is simply a k-module together with a distinguished
endomorphism ξ (representing the acton of X).

We claim that a B-comodule is the same as an N-graded k-module. Let N be a B-
comodule and consider the following k-submodules Np := {n ∈ N | δ (n) = n⊗Xp} for all
p ∈ N. Obviously, ∑p∈NNp ⊆ N . However, observe the following. For every n ∈ N we have
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that δ (n) = ∑
p∈N np ⊗Xp because k [X] is free over k with basis {Xp | p ∈ N}. Denote by

γp : B → k their dual maps (i.e. γq (Xp) = δp,q). In addition, coassociativity implies that∑
p∈N

δ (np)⊗Xp =
∑
p∈N

np ⊗Xp ⊗Xp

and, by applying N ⊗B⊗γq to both sides of the latter equality, we get that for every p ∈ N
δ (np) = np ⊗Xp,

so that N ⊆ ∑
p∈NNp as well and hence N = ∑

p∈NNp. This allows us to consider the
surjective k-linear morphism ⊕

p∈NNp → N given by (np)p∈N 7→
∑
p∈N np. Its kernel is given

those (np)p∈N such that ∑p∈N np = 0. However,

0 = (N ⊗ γq)
δ

∑
p∈N

np

 = (N ⊗ γq)
∑
p∈N

np ⊗Xp

 = nq

for every q ∈ N tells us that (np)p∈N has to be 0 and hence ⊕p∈NNp
∼= N . The converse is

true as well. If ⊕p∈NNp is any N-graded k-module we can define a B-coaction by setting
δ (np) := np ⊗Xp for every np ∈ Np.

Now, a Hopf B-module is an N-graded k-module ⊕p∈NMp = M (since it is a comodule)
together with a distinguished endomorphism ξ : M → M (since it is a module) that is
compatible with the comodule structure in the sense that

δ (ξ (mp)) = δ (mp ·X) = δ (mp) ·X = mp ·X ⊗Xp+1 = ξ (mp)⊗Xp+1

for every p ∈ N and mp ∈Mp. In light of the definition of the Mp’s, this tells us that ξ has
to be homogeneous of degree +1. The converse is true as well: any N-graded k-module
together with a homogeneous endomorphism of degree +1 admits a natural structure of
Hopf B-module. In this context it is easy to see that M coB = M0.

Consider the distinguished Hopf module B ⊗B with structures

δ (a⊗ b) :=
∑(

a⊗ b(1)
)
⊗ b(2) and (a⊗ b) · b′ :=

∑
ab′(1) ⊗ bb′(2)

for all a, b, b′ ∈ B. We may denote it by B• ⊗ B•• or simply by B⊗̂B. One may check as
before that

(
B⊗̂B

)coB ∼= B via the assignments ∑ ai ⊗ bi 7→
∑
aiε (bi) and b 7→ b⊗ 1 for∑

ai ⊗ bi ∈
(
B⊗̂B

)coB
and b ∈ B respectively. Therefore,

εB⊗̂B : B ⊗B•• → B• ⊗B•• : Xa ⊗Xb 7→ (Xa ⊗ 1) ·Xb = Xa+b ⊗Xb

which cannot be surjective, as 1⊗X cannot be in the image for example.

Theorem 1.7. (The Structure Theorem of Hopf Modules) The following are equivalent for
a bialgebra B:
(a) B is a Hopf algebra;
(b) −⊗B and (−)coB form an (adjoint) equivalence;
(c) the k-linear map β : B ⊗B•• → B•⊗B•• : a⊗ b 7→ ∑

ab(1)⊗ b(2) is an isomorphism of
Hopf modules.
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Moreover, if any one of the above holds, M coB is a k-direct summand of M for every
Hopf module M .

Proof. To prove that (a) implies (b) proceed as follows. For every M define τM : M →M :
m 7→ ∑

m[0] · S
(
m[1]

)
and notice that τM (m) ∈M coB for every m ∈M . Indeed,

δ
(∑

m[0] · S
(
m[1]

))
=
∑

m[0][0] · S
(
m[1]

)
(1)
⊗m[0][1]S

(
m[1]

)
(2)

=
∑

m[0] · S
(
m[2]

)
(1)
⊗m[1]S

(
m[2]

)
(2)

=
∑

m[0] · S
(
m[2](2)

)
⊗m[1]S

(
m[2](1)

)
=
∑

m[0] · S
(
m[3]

)
⊗m[1]S

(
m[2]

)
=
∑

m[0] · S
(
m[2]

)
⊗m[1](1)S

(
m[1](2)

)
=
∑

m[0] · S
(
m[1]

)
⊗ 1.

Therefore, one may consider the composition

σM :=
(
m

δ7→
∑

m[0] ⊗m[1]
τM⊗B7→

∑
m[0] · S

(
m[1]

)
⊗m[2]

)
and this satisfies

σM

(
εM

(∑
i

mi ⊗ bi
))

= σM

(∑
i

mi · bi
)

=
∑
i

(mi · bi)[0] · S
(
(mi · bi)[1]

)
⊗ (mi · bi)[2]

=
∑
i

mi · bi(1) · S
(
bi(2)

)
⊗ bi(3) =

∑
i

mi ⊗ bi

because the mi’s are coinvariants and
εM (σM (m)) = εM

(∑
m[0] · S

(
m[1]

)
⊗m[2]

)
=
∑

m[0] · S
(
m[1]

)
m[2] = m,

whence σM is the inverse of εM .
To prove that (b) implies (c) it suffices to note that, as we already saw implicitly in the

foregoing example, β is the composition

β :
(
B ⊗B•• ∼= (B• ⊗B••)

coB ⊗B••
ε
B⊗̂B→ B• ⊗B••

)
.

Finally, to prove that (c) implies (a) assume that β is invertible and consider s (a) :=
(B ⊗ ε) (β−1 (1⊗ a)) for all a ∈ B. Since β is colinear, β−1 is colinear as well, so that∑

β−1
(
1⊗ a(1)

)
⊗ a(2) = (B ⊗∆)

(
β−1 (1⊗ a)

)
and, by applying B ⊗ ε⊗B to both sides,∑

s
(
a(1)

)
⊗ a(2) = β−1 (1⊗ a)

for every a ∈ B. By applying (B ⊗ ε) ◦ β to both sides∑
s
(
a(1)

)
a(2) = (B ⊗ ε)

(∑
s
(
a(1)

)
a(2) ⊗ a(3)

)
= (B ⊗ ε)

(
β
(∑

s
(
a(1)

)
⊗ a(2)

))
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= (B ⊗ ε)
(
β
(
β−1 (1⊗ a)

))
= (B ⊗ ε) (1⊗ a) = ε (a) 1.

For the other relation, observe that β (a′a⊗ b) = a′ab(1) ⊗ b(2) = a′β (a⊗ b) for every
a, a′, b ∈ B, whence β is also B-linear with respect to the regular left B-action. This allows
us to check directly that∑

a(1)s
(
a(2)

)
=
∑

a(1) (B ⊗ ε)
(
β−1

(
1⊗ a(2)

))
=
∑

(B ⊗ ε)
(
a(1) · β−1

(
1⊗ a(2)

))
=
∑

(B ⊗ ε)
(
β−1

(
a(1) ·

(
1⊗ a(2)

)))
=
∑

(B ⊗ ε)
(
β−1

(
a(1) ⊗ a(2)

))
=
∑

(B ⊗ ε)
(
β−1 ((1⊗ 1) · a)

)
=
∑

(B ⊗ ε)
(
β−1 (1⊗ 1) · a

)
=
∑

(B ⊗ ε)
(
β−1 (1⊗ 1)

)
ε (a) = ε (a) 1

for every a ∈ B. We are left to check the last claim of the statement. Consider again
the morphism τM : M → M coB : m 7→ ∑

m[0] · S
(
m[1]

)
from above. This turns out to

be a k-linear retraction of the canonical inclusion M coB → M , which means that the
short exact sequence of k-modules 0 → M coB → M → M/M coB → 0 splits and hence
M ∼= M coB ⊕M/M coB. The proof is now complete.

�

Example 1.8. Let G be a group and consider B = kG, the group algebra over G.
Analogously to what happens for k [X], comodules over B are G-graded k-modules, that
is to say, M is a B-comodule if and only if M = ⊕

g∈GMg for some submodules Mg ⊆M .
Indeed, assume that M is a B-comodule and define Mg := {m ∈M | δ (m) = m⊗ eg}. For
every m ∈M we can write

δ (m) =
∑
g∈G

mg ⊗ eg

so that m = ∑
g∈Gmg. Now, by coassociativity of δ we have that∑

g∈G
δ (mg)⊗ eg =

∑
g∈G

mg ⊗∆ (eg) =
∑
g∈G

mg ⊗ eg ⊗ eg.

Consider the elements e∗g : kG → k : eh 7−→ δg,h and apply M ⊗ B ⊗ e∗h to both sides of
the latter equality to see that δ (mh) = mh ⊗ eh, i.e. mh ∈Mh and M = ∑

g∈GMg. In the
same way as we did previously, one proves that the sum is direct, whence M = ⊕

g∈GMg.
Conversely, if M = ⊕

g∈GMg then it is enough to define δ (mg) := mg ⊗ eg for every
mg ∈Mg. Furthermore, M is a Hopf module if and only if the coaction is B-linear, which
can be seen to be equivalent to the fact that Mg · eh ⊆Mgh for every g, h ∈ G. Now,

Mg · eh ⊆Mgh = Mgh · (eh−1eh) ⊆Mghh−1 · eh = Mg · eh
entails that in fact Mg · eh = Mgh for every g, h ∈ G and, in particular, that Mg = M1 · eg
for every g ∈ G. Therefore, for every m ∈ M there exist µg ∈ M1 for g ∈ G such that
m = ∑

g∈G µg · eg. Let us see that these are also unique. Assume that∑
g∈G

µ′g · eg = m =
∑
g∈G

µg · eg
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and apply δ to both sides to get∑
g∈G

µ′g · eg ⊗ eg =
∑
g∈G

µg · eg ⊗ eg.

Now apply M ⊗ e∗h to get that µ′h · eh = µh · eh and finally act with eh−1 to conclude that
µ′h = µh for every h ∈ G.

Observe now that M coB = M1 again. In fact, δ (m) = ∑
g∈G δ (mg) = ∑

g∈Gmg ⊗ eg =
m⊗ e1 if and only if m = M1, because the eg’s are k-linearly independent. Therefore the
morphism

εM : M1 ⊗B →M :
∑
i

mi ⊗ egi 7−→
∑
i

mi · egi

is invertible with inverse M → M1 ⊗ B : m = ∑
g∈G µg · eg 7−→

∑
g∈G µg ⊗ eg. This is

coherent with the Structure Theorem since for every m = ∑
g∈G µg · eg ∈M we have∑

g∈G
(µg · eg)[0] S

(
(µg · eg)[1]

)
⊗ (µg · eg)[2] =

∑
g∈G

µg · egS (eg)⊗ eg =
∑
g∈G

µg ⊗ eg.

2. Rational modules

Recall that, in general, if C is a k-coalgebra then C∗ is a k-algebra with unit ε and
multiplication the convolution product f ∗ g = (f ⊗ g) ◦∆. From now on and until the end
of the section, coalgebras are additionally assumed to be free as a k-modules (unless stated
otherwise).

Lemma 2.1. For every k-module M and every k-coalgebra C, every linear map δ : M →
M ⊗ C induces a linear map µδ : C∗ ⊗M →M given by
(1) µδ (f ⊗m) = (M ⊗ f) (δ (m))
for all f ∈ C∗, m ∈M . Moreover, δ is a coassociative and counital coaction if and only if
µδ is an associative and unital action.

Proof. The map µδ is given as the following composition
µδ = (M ⊗ evC) ◦ (τC∗,M ⊗ C) ◦ (C∗ ⊗ δ)

where τC∗,M : C∗ ⊗M →M ⊗C∗ is the twist and evC : C∗ ⊗C → k is the evaluation map.
Now recall that, by the hom-tensor adjunction, we have a bijection ρ : Homk (C∗ ⊗M,M)→
Homk (C∗,Endk (M)) and recall also that µ ∈ Homk (C∗ ⊗M,M) is an associative and unital
action if and only if ρ (µ) is a morphism of k-algebras. In light of this, for every f, g ∈ C∗
consider the following diagrams,

M

δ
��

idM

$$
M ⊗ C

M⊗ε
// M

and M
δ //

δ
��

M ⊗ C
δ⊗M

��

M⊗g // M

δ
��

M ⊗ C
M⊗∆

//

M⊗f∗g //

M ⊗ C ⊗ C

M⊗f⊗g ''

M ⊗ C
M⊗f
��
M
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where in the latter one everything is commutative apart from the internal square (expressing
coassociativity of δ) and the external triangle (expressing multiplicativity of ρ (µδ), which
is equivalent to associativity of µδ). The left-most diagram makes it clear that δ is counital
if and only if ρ (µδ) is unital, if and only if µδ is unital. It is also easy to see from the
right-most one that if δ is coassociative, then µδ is associative. To prove the converse,
assume that for every f, g ∈ C∗ we have ρ (µδ) (f ∗ g) = ρ (µδ) (f) ◦ ρ (µδ) (g). This implies
that for every m ∈M ,
(2) (M ⊗ f ⊗ g) ((δ ⊗M) (δ (m))− (M ⊗∆) (δ (m))) = 0.
Write (δ ⊗M) (δ (m))− (M ⊗∆) (δ (m)) = ∑t

i,j=1mij ⊗ ci ⊗ dj where the ci’s and the dj ’s
are elements of the k-basis of C. One can consider f = c∗i and g = d∗j for i and j running
from 1 to t defined by setting c∗i (ck) = δi,k = d∗i (dk). Thus (2) entails that mij = 0 for all
i, j = 1, . . . , t. �

This provides for us a functor L : MC → C∗M from the category of right C-comodules
MC to the one of left C∗-modules C∗M . In general this is not an equivalence, as we will
see soon. In this section we are interested in describing those C∗-modules that lies in the
image of L. To this aim, we start by giving the following definition.

Definition 2.2. A C∗-module (M,µ) is said to be rational if there exists a linear map
δ : M →M ⊗ C, called the associated coaction, such that µ = µδ.

Remark 2.3. In light of Lemma 2.1, the associated coaction of a rational module (M,µ) is
indeed a coaction, whence (M,µ) = L (M, δ).

Example 2.4. Since (C,∆) is a C-comodule, C is a rational C∗-module with action
f · c = ∑

c(1)f
(
c(2)

)
. Analogously, for every k-module M we have that (M ⊗ C,M ⊗∆) is

a C-comodule and hence a rational C∗-module with action f · (m⊗ c) = ∑
m⊗ c(1)f

(
c(2)

)
.

Our motivation for introducing rational modules will be clear in the section devoted to
integrals for Hopf algebras. For every k-module M and every k-coalgebra C consider the
following map

αM : M ⊗ C → Homk (C∗,M) : m⊗ c 7→ [f 7→ mf (c)] ,
that is to say,
(3) αM (m⊗ c) (f) = (M ⊗ f) (m⊗ c)

Lemma 2.5. The k-linear morphism αM is injective.

Proof. Notice that αM is indeed a k-linear morphism. In fact, it can be seen as the
composition

M ⊗ C →M ⊗ C∗∗ → Homk (C∗,M)
m⊗ c 7→ m⊗ evc 7→ [f 7→ evc (f)m]

Moreover, let ∑t
i=1mi ⊗ ci ∈ M ⊗ C be such that ∑mif (ci) = 0 for all f ∈ C∗, where

again we may assume that the ci’s are elements of the k-basis of C. Analogously to what
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we did before, we may consider f = c∗i for i = 1, . . . , t and this entails that mi = 0 for every
i. �

Corollary 2.6. The assignment γM : Homk (M,M ⊗ C) → Homk (C∗ ⊗M,M) provided
by (1) is injective. In particular if the associated coaction exists, then it is unique.

Proof. Notice that for every m ∈M , f ∈ C∗, δ ∈ Homk (M,M ⊗ C)

((αM ◦ δ) (m)) (f) (3)= (M ⊗ f) (δ (m)) (1)= µδ (f ⊗m) = γM (δ) (f ⊗m) ,
whence if γM (δ) = 0 then αM ◦ δ = 0 and so, by injectivity of αM , δ = 0. �

On the other hand, for every C∗-module M we may consider the assignment
βM : M → Homk (C∗,M) : m 7→ [f 7→ f ·m] ,

where · denotes the C∗ action.

Remark 2.7. Note that Homk (C∗,M) is a C∗-module with action
C∗ ⊗ Homk (C∗,M)→ Homk (C∗,M) : f ⊗ ψ 7→ [(f · ψ) : g 7→ ψ (g ∗ f)] .

Lemma 2.8. Both αM and βM are morphisms of C∗-modules. Moreover, they are natural
transformations.

Proof. The following computations for f, g ∈ C∗,m ∈M, c ∈ C

αM (f · (m⊗ c)) (g) =
∑

αM
(
m⊗ c(1)f

(
c(2)

))
(g) =

∑
mg

(
c(1)

)
f
(
c(2)

)
=
∑

m (g ∗ f) (c) = αM (m⊗ c) (g ∗ f) = (f · αM (m⊗ c)) (g) ,
βM (f ·m) (g) = g · (f ·m) = (g ∗ f) ·m = βM (m) (g ∗ f) = (f · βM (m)) (g) ,

entail that both αM and βM are C∗-linear. Concerning naturality, if ψ : M → N is a
C∗-linear morphism then

((αN ◦ (ψ ⊗ C)) (m⊗ c)) (f) = αN (ψ (m)⊗ c) (f) (3)= (M ⊗ f) (ψ (m)⊗ c) = ψ (m) f (c)
= ψ (mf (c)) = ψ (αM (m⊗ c) (f))
= ((Homk (C∗, ψ) ◦ αM) (m⊗ c)) (f) ,

((βN ◦ ψ) (m)) (f) = f · ψ (m) = ψ (f ·m) = ψ (βM (m) (f))
= ((Homk (C∗, ψ) ◦ βM) (m)) (f)

for every m ∈M, c ∈ C, f ∈ C∗. �

Proposition 2.9. The following are equivalent for a C∗-module M :
(a) there exists δ : M →M ⊗ C such that αM ◦ δ = βM ;
(b) there exists δ : M →M ⊗ C such that µM = µδ (i.e. M is a rational C∗-module).

Proof. Notice that for every m ∈M , f ∈ C∗,

((αM ◦ δ) (m)) (f) (3)= (M ⊗ f) (δ (m)) (1)= µδ (f ⊗m)
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and
(βM (m)) (f) = µM (f ⊗m) .

Thus αM ◦δ = βM if and only if for every m ∈M , f ∈ C∗ we have µδ (f ⊗m) = µM (f ⊗m),
if and only if µδ = µM . Now, in light of Lemma 2.12 we know that M rat satisfies condition
(1) with δ : M rat → M rat ⊗ C : m 7→ ∑t

i=1mi ⊗ ci, which implies that µM rat = µδ by
condition (2) and hence that δ is a coassociative and counital coaction by Lemma 2.1. �

Definition 2.10. For every C∗-module M we define M rat := β−1
M (αM (M ⊗ C)) and we

call it the rational part of M .

In what follows we are going to show that M rat is always a rational C∗-module and that
it is the maximal rational C∗-module in M (i.e. the biggest one whose induced C∗-action is
coming from a C-coation as in Lemma 2.1).

Lemma 2.11. For every C∗-module M , M rat is a C∗-submodule of M . In particular, it is
a C∗-module.

Proof. Notice that on the one hand M ⊗ C with δ = M ⊗∆ is a C-comodule, whence it
becomes a C∗-module with action µδ as in Lemma 2.1. On the other hand, Homk (C∗,M)
is a C∗-module via

C∗ ⊗ Homk (C∗,M)→ Homk (C∗,M) : f ⊗ ψ 7−→ [g 7−→ ψ (g ∗ f)] .
Now, the following computations for f, g ∈ C∗,m ∈M, c ∈ C

αM (f · (m⊗ c)) (g) =
∑

αM
(
m⊗ c(1)f

(
c(2)

))
(g) =

∑
mg

(
c(1)

)
f
(
c(2)

)
=
∑

m (g ∗ f) (c) = αM (m⊗ c) (g ∗ f) = (f · αM (m⊗ c)) (g) ,

βM (f ·m) (g) =
∑

βM
(
m[0]f

(
m[1]

))
(g) =

∑(
g ·m[0]

)
f
(
m[1]

)
=
∑

m[0]g
(
m[1]

)
f
(
m[2]

)
=
∑

m[0] (g ∗ f)
(
m[1]

)
= βM (m) (g ∗ f) = (f · βM (m)) (g) ,

entails that both αM and βM are C∗-linear. Thus M rat is a C∗-submodule of M . �

Lemma 2.12. For every C∗-module M and m ∈M , m ∈M rat if and only if there exists a
(necessarily unique) ∑t

i=1mi⊗ci in M⊗C such that f ·m = ∑t
i=1mif (ci) for every f ∈ C∗.

Moreover, ∑t
i=1mi ⊗ ci lives in M rat ⊗ C. In particular, M rat is a rational C∗-module and

a C-comodule.

Proof. Observe that f · m = (βM (m)) (f) and ∑t
i=1mif (ci) =

(
αM

(∑t
i=1mi ⊗ ci

))
(f),

thus we have that m ∈ M rat if and only if βM (m) ∈ αM (M ⊗ C), if and only if there
exists ∑t

i=1mi ⊗ ci ∈ M ⊗ C such that βM (m) = αM
(∑t

i=1mi ⊗ ci
)
, if and only if

f ·m = ∑t
i=1mif (ci) for every f ∈ C∗. Uniqueness follows immediately from injectivity

of αM . Concerning the fact that ∑t
i=1mi ⊗ ci ∈M rat ⊗ C, note firstly that since C is free

over k, it is flat and hence we may consider M rat ⊗ C ⊆M ⊗ C. Secondly, since M rat is a
C∗-submodule of M , for every m ∈M rat and f ∈ C∗ we have ∑t

i=1mif (ci) = f ·m ∈M rat.
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By assuming the ci’s to be part of a k-basis for C and by taking f = c∗i for i from 1 to t we
can conclude that mi ∈M rat for all i. �

Corollary 2.13. M rat is the maximal rational C∗-module in M . In fact, it is the sum of
all rational C∗-modules in M .

Proof. Let N be a C∗-submodule of M which is rational and denote by j : N → M the
canonical inclusion. Then there exists δ : N → N ⊗ C such that αN ◦ δ = βN . Set
j∗ := Homk (C∗, j). By naturality of α and β we get

αM ◦ (j ⊗ C) ◦ δ = j∗ ◦ αN ◦ δ = j∗ ◦ βN = βM ◦ j,

from which it follows that N ⊆M rat and the first claim is proved. As a consequence, every
rational C∗-module in M lies in M rat and so does their sum. However, being M rat rational,
it is one of the modules appearing in the sum, thus proving the second claim. �

Remark 2.14. For the interested reader, M rat can be seen as the pullback of the maps
(αM , βM). Corollary 2.13 becomes then a consequence of this fact.

We are now ready to see why the functor L is not an equivalence in general. For every C∗-
module (M,µ), consider its rational part M rat together with the coaction δµ : M rat →M rat⊗
C of Lemma 2.12. Now, let ϕ : (M,µ)→ (N, ν) be a morphism of C∗-modules and denote
by ϕ∗ the C∗-linear morphism Homk (C∗, ϕ) : Homk (C∗,M)→ Homk (C∗, N) , ψ 7→ ϕ ◦ ψ.

Lemma 2.15. The C∗-linear morphism ϕ induces a C-colinear morphism ϕrat : (M rat, δµ)→
(N rat, δν).

Proof. Let m ∈M rat and consider ϕ (m) ∈ N . Since α and β are natural transformations,

(4) βN (ϕ (m)) = ϕ∗ (βM (m)) = ϕ∗ (αM (δµ (m))) = αN ((ϕ⊗ C) (δµ (m)))

whence ϕ (m) ∈ N rat. Moreover, from this it follows that βN (ϕ (m)) = αN (δν (ϕ (m))) and
hence, by injectivity of αN , that (ϕ⊗ C) (δµ (m)) = δν (ϕ (m)). Denote by ϕrat : M rat →
N rat the (co)restriction of ϕ to M rat and N rat. Since m ∈ M rat was general, we conclude
that (ϕrat ⊗ C) ◦ δµ = δν ◦ ϕrat. �

Proposition 2.16. The assigment R : C∗M →MC , (M,µ) 7→ (M rat, δµ) is functorial and
it is right adjoint to the functor L : MC → C∗M : (N, δ) 7→ (N,µδ). The unit is given by
the identity morphism and the counit by the canonical inclusion M rat ⊆M .

Proof. Functoriality follows from Lemma 2.15. To prove that it is right adjoint to L, let us
start by observing that if (N, δ) is a C-comodule then (N,µδ) is a rational C∗-module (by
definition) and δ is the unique associated coaction to µδ. Thus R (N,µδ) = (N, δ). The
other way around, let (M,µ) be any C∗-module. Then R (M,µ) = (M rat, δµ) where δµ is
the (unique) coaction such that αM rat ◦ δµ = βM rat . Therefore, LR (M,µ) = L (M rat, δµ) =(
M rat, µδµ

)
where µδµ = γM rat (δµ) satisfies

µδµ (f ⊗m) (1)= (M rat ⊗ f) (δµ (m)) (3)= αM rat (δµ (m)) (f) = βM rat (m) (f) = µM rat (f ⊗m)
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for every m ∈ M rat and f ∈ C∗. Therefore, LR (M,µ) = (M rat, µM rat). Let εM :
(M rat, µM rat)→ (M,µ) denote the canonical inclusion. Then ηN = Id : (N, δ)→ RL (N, δ)
and εM are the unit and the counit of the stated adjunction, respectively. To show this,
observe simply that R (εM) = εrat

M = Id(M rat,δµ) and that εL(N) : (N,µδ)rat = (N,µδ) →
(N,µδ) = Id(N,µδ). �

Theorem 2.17. The functor L : MC → C∗M : (N, δ) 7→ (N,µδ) is an equivalence of
categories (in fact, an isomorphism) if and only if the coalgebra C is free of finite rank.

Proof. In light of Proposition 2.16, L is an (adjoint) equivalence if and only if the counit is a
natural isomorphism, that is to say, if and only if every C∗-module M is rational. Consider
the distinguished C∗-module (C∗, ∗). In light of Proposition 2.9, saying that it is rational
means that there should exist δ : C∗ → C∗⊗C such that αC∗ ◦δ = βC∗ . Therefore, for every
f ∈ C∗ there exists ∑ f[0]⊗f[1] ∈ C∗⊗C such that h∗f = ∑

f[0]h
(
f[1]
)

for all h ∈ C∗. Pick
f = ε. Then the latter relation would imply that h = h ∗ ε = ∑

ε[0]h
(
ε[1]
)

= ∑
ε[0]evε[1] (h)

for all h ∈ C∗, that is to say, that C∗ is a finitely generated and projective k-module with
dual basis ∑ ε[0] ⊗ evε[1] . Write δ (ε) = ∑t

i=1 gi ⊗ ci in such a way that the ci’s are elements
of the k-basis of C. Consider the canonical (injective, because C is free) k-linear morphism
j : C → C∗∗ : c 7→ evc. Then for every h ∈ C∗ and every c ∈ C we have

evc (h) = evc
(

t∑
i=1

gih (ci)
)

=
t∑
i=1

evc (gi)h (ci) =
t∑
i=1

gi (c) evci (h) ,

that is to say,

j (c) = evc =
t∑
i=1

gi (c) evci =
t∑
i=1

gi (c) j (ci) = j

(
t∑
i=1

gi (c) ci
)

and hence c = ∑t
i=1 gi (c) ci by injectivity of j. It follows that C is finitely generated and so

it is free of finite rank. Conversely, assume that C is free of finite rank. Let
{
c(1), . . . , ct

}
be

a k-basis and
{
c∗(1), . . . , c

∗
t

}
be its dual basis. Let M be a C∗-module and for every m ∈M

set mi := c∗i ·m. Then, for every f ∈ C∗
t∑
i=1

mif (ci) =
t∑
i=1

(c∗i ·m) f (ci) =
(

t∑
i=1

f (ci) c∗i
)
·m = f ·m

and hence m ∈M rat by Lemma 2.12. �

Denote by Rat (C∗M) the full subcategory of rational C∗-modules. We can consider the
corestriction L′ : MC → Rat (C∗M) of the functor L and the restriction R′ : Rat (C∗M)→
MC , (M,µ) 7→ (M, δµ) of the functor R.

Theorem 2.18. The functors L′ and R′ are quasi-inverses, giving an equivalence of
categories MC ∼= Rat (C∗M).

Remark 2.19. For the interested reader, the foregoing theorem can be used to conclude that
the category of comodules over a coalgebra is a Grothendieck category (see [5]).
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Remark 2.20. If C is finitely generated and projective as a k-module with dual basis
{ei, e∗i }

s
i=1, then we can obtain the same conclusion of Lemma 2.1 by observing that

t∑
i,j=1

mij ⊗ ci ⊗ dj =
t∑

i,j=1

s∑
k,h=1

mije
∗
k (ci) e∗h (dj)⊗ ek ⊗ eh

=
s∑

k,h=1

 t∑
i,j=1

mije
∗
k (ci) e∗h (dj)

⊗ ek ⊗ eh = 0

implies that (δ ⊗M) (δ (m)) = (M ⊗∆) (δ (m)). Analogously, Lemma 2.5 can be obtained
by observing that

t∑
i=1

mi ⊗ ci =
t∑
i=1

s∑
k=1

mi ⊗ e∗k (ci) ek =
s∑

k=1

(
t∑
i=1

mie
∗
k (ci)

)
⊗ ek = 0.

Notice that in this case, αM is always an isomorphism with inverse

α−1
M : Homk (C∗,M)→M ⊗ C : ψ 7→

s∑
k=1

ψ (e∗k)⊗ ek.

Indeed,

α−1
M (αM (m⊗ c)) =

s∑
k=1

αM (m⊗ c) (e∗k)⊗ ek =
s∑

k=1
me∗k (c)⊗ ek = m⊗

s∑
k=1

e∗k (c) ek = m⊗ c,

αM
(
α−1
M (ψ)

)
(f) = αM

(
s∑

k=1
ψ (e∗k)⊗ ek

)
(f) =

s∑
k=1

ψ (e∗k) f (ek) = ψ

(
s∑

k=1
f (ek) e∗k

)
= ψ (f) .

For this reason, it makes no sense to speak about rational C∗-modules in this context, as
every C∗-module would be rational.

Example 2.21. Assume that k is a field and consider k [X], the polynomial algebra with
the coalgebra (in fact, bialgebra) structure given by

∆
(
X t
)

=
∑
i+j=t

(
t

i

)
X i ⊗Xj, ε

(
X t
)

= δ0,t

for all t ∈ N. For all s ∈ N define γs : k [X]→ k : X i 7→ δi,s. Notice that
(
γs ∗ γt

)
(Xr) =

∑
i+j=r

(
r

i

)
γs
(
X i
)
γt
(
Xj
)

=
{

0 s+ t 6= r(
r
s

)
s+ t = r

,

that is to say, γs ∗ γt =
(
s+t
s

)
γs+t. Moreover, γ0 = ε = 1k[X]∗ . If M is a rational k [X]∗-

module, then for every m ∈M we can write

δ (m) =
∑
i≥0

mi ⊗X i
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with almost all mi = 0. Set Nm := max {i ≥ 0 | mi 6= 0}, so that δ (m) = ∑Nm
i=0 mi ⊗ X i.

As a consequence, for every t ∈ N we have

γt ·m =
Nm∑
i=0

miγ
t
(
X i
)

=
{

0 t > Nm

mt t ≤ Nm
.

Summing up, if M is a rational k [X]∗-module, then for every m ∈M there exists Nm ≥ 0
such that γNm+1 ·m = 0. Observe that this implies that γs ·m = 0 for every s ≥ Nm + 1,
since in such a case

(
s

Nm+1

)
γs ·m =

(
r+Nm+1
Nm+1

)
γr+Nm+1 ·m = γr ·

(
γNm+1 ·m

)
= 0, from

which it follows that γs ·m = 0.
Conversely, assume that M is a k [X]∗-module such that for every m ∈M there exists

Nm ≥ 0 (which we may assume to be minimal) satisfying γNm+1 ·m = 0 and let us show that
M is rational. First of all, observe that for all m,m′ ∈M and k ∈ k we have Nkm = Nm,
Nm+m′ = max {Nm, Nm′} and Nγt·m = Nm − t, as

γNm−t ·
(
γt ·m

)
=
(
γNm−t ∗ γt

)
·m =

(
Nm

t

)
γNm ·m = 0

and no smaller one satisfies the same property. For every m ∈M define

δ (m) :=
Nm∑
i=0

γi ·m⊗X i.

This δ is k-linear because

δ (km+m′) =
max{Nm,Nm′}∑

i=0
γi · (km+m′)⊗X i

= k
max{Nm,Nm′}∑

i=0
γi ·m⊗X i +

max{Nm,Nm′}∑
i=0

γi ·m′ ⊗X i

= k
Nm∑
i=0

γi ·m⊗X i +
Nm′∑
i=0

γi ·m′ ⊗X i

= kδ (m) + δ (m′)
and it is counital because

(M ⊗ ε) (δ (m)) =
Nm∑
i=0

γi ·mε
(
X i
)

= γ0 ·m = m,

whence we are left to check that it is coassociative. To this aim compute

(M ⊗∆) (δ (m)) =
Nm∑
h=0

∑
i+j=h

(
h

i

)
γh ·m⊗X i ⊗Xj

and

(δ ⊗ k [X]) (δ (m)) =
Nm∑
i=0

δ
(
γi ·m

)
⊗X i =

Nm∑
i=0

Nm−i∑
j=0

γj ·
(
γi ·m

)
⊗Xj ⊗X i
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=
Nm∑
i=0

Nm−i∑
j=0

(
i+ j

i

)
γi+j ·m⊗Xj ⊗X i (h:=i+j)=

Nm∑
h=0

∑
i+j=h

(
h

i

)
γh ·m⊗Xj ⊗X i.

Finally, we want to show that for every g ∈ k [X]∗ we have g ·m = ∑Nm
i=0 (γi ·m) g (X i).

Observe that the assignment

k [X]∗ → k [[Z]] : f 7→
∑ f (Xn)

n! Zn

gives an isomorphism of k-algebras. Note also that, via this isomorphism, γn corresponds
to Zn/n! for every n ≥ 0. As a consequence, we may write g = ∑

n≥0 g (Xn) γn. Now,
decompose g as follows:

g =
∑
n≥0

g (Xn) γn =
Nm∑
n=0

g (Xn) γn +
∑

n≥Nm+1
g (Xn) γn

=
Nm∑
n=0

g (Xn) γn +
∑
t≥0

g
(
XNm+1+t

)
γNm+1+t

=
Nm∑
n=0

g (Xn) γn +
∑
t≥0

g
(
XNm+1+t

)
γt(

Nm+1+t
t

)
 ∗ γNm+1

and set h := ∑
t≥1

g(XNm+1+t)γt
(Nm+1+t

t ) . We may now compute

g ·m =
(
Nm∑
n=0

g (Xn) γn + h ∗ γNm+1
)
·m

=
Nm∑
i=0

g
(
X i
)
γi ·m+ h ·

(
γNm+1 ·m

)

=
Nm∑
i=0

g
(
X i
)
γi ·m =

Nm∑
i=0

(
γi ·m

)
g
(
X i
)
,

which means exactly that M is rational.

Exercise 2.22. Show that (k [X]∗ , ∗) is not a rational k [X]∗-module.

Solution 1. As we have seen, k [X]∗ ∼= k [[Z]]. Therefore, γt ∗ f = 0 for some t ≥ 0 implies
that f = 0, since k [X]∗ is a domain.

Exercise 2.23. Consider C := k [X] the k-module of polynomials over a commutative ring k
with the coalgebra structure given by

∆
(
X t
)

=
∑
i+j=t

X i ⊗Xj, ε
(
X t
)

= δ0,t

for all t ∈ N. For all s ∈ N, consider γs : k [X]→ k : X i 7→ δi,s. Prove that a C∗-module
M is rational if and only if for every m ∈M there exists tm ∈ N such that γtm ·m = 0.
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3. Integral theory

Integrals are an important tool in the theory of Hopf algebras. From the geometric point
of view, they correspond to the existence of a Haar measure on the associated topological
group in the sense of example 3.3 and, in general, they can be used to discuss when a Hopf
algebra is Frobenius, separable or semisimple.

Definition 3.1. A k-algebra A is said to be augmented if it comes together with an algebra
morphism ε : A→ k. Given an augmented k-algebra (A, ε), we say that an element t ∈ A
is a left integral in A if for all a ∈ A we have at = ε (a) t. It is a right integral if ta = tε (a)
instead. We denote by

∫ l
A and

∫ r
A the modules of left and right integrals in A, respectively.

Notice that if B is a bialgebra or a Hopf algebra, then both B and B∗ are augmented
algebras.

Definition 3.2. A left (resp. right) integral in B∗ is called a left (resp. right) integral on
B.

Example 3.3. The following example is intended to explain the terminology ”integral”.
Recall that a topological group (G, τ,m, e) is a topological space (G, τ) together with a group
structure (G,m, e) such that m : G×G→ G : (g, g′) 7→ gg′ and inv : G→ G : g 7→ g−1 are
continuous (G × G has the product topology). For example, the group GL2 (R) of 2 × 2
invertible matrices over the reals with the Euclidean topology induced by the inclusion
GL2 (R) ⊆ R4 is a topological group (the multiplication is made by polynomial entries).
Denote by R (G) the vector subspace of (RG)◦ containing those functions which are also
continuous (i.e. R (G) = (RG)◦ ∩ C0 (G)). It can be shown that R (G) is a Hopf algebra,
called the Hopf algebra of continuous representative functions on G. If G is also compact as
a topological space, then there exists always a measure ν on G, the so-called Haar measure.
If we set

σ (f) :=
∫
G
fdν

then σ ∈ R (G)∗ is an integral on R (G) in the above sense (see [1, Example 3.14], [5, §5.1]).
It also satisfies the additional condition that σ (f 2) > 0 for every f 6= 0. It is possible to
show that, in fact, this is part of an anti-equivalence of categories between the category of
compact topological groups and the category of real commutative Hopf algebras admitting
an integral σ as above (plus an additional technical condition ensuring that the grouplikes
of the finite dual separate elements, in the sense that if x and y are different in H Hopf,
then there exists f ∈ G (H◦) such that f (x) 6= f (y)).

Now, let us go back to the main track. Assume that B is free as a k-module and recall that
B∗ is in particular a left B∗-module with obvious action given through ∗. We may consider
its rational part, B∗rat, which is now a right B-comodule with coaction δ (f) = ∑

f[0] ⊗ f[1]

uniquely determined by the relation g ∗ f = ∑
f[0]g

(
f[1]
)

for every g ∈ B∗.

Lemma 3.4. Left integrals on B form a two-sided ideal in B∗. Moreover, if B is free as a
k-module then

∫ l
B∗ is rational as left B∗-module and

∫ l
B∗ = (B∗rat)coB.
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Proof. Recall that B∗ is augmented with augmentation ε∗ : B∗ → k : f 7→ f (1). If λ is a
left integral and g ∈ B∗, then λ ∗ g is still a left integral because

f ∗ (λ ∗ g) = (f ∗ λ) ∗ g = f (1)λ ∗ g
for all f ∈ B∗. Of course, g ∗ λ = g (1)λ is still an integral, whence

∫ l
B∗ is a two-sided

ideal of B∗. Assume that B is free as a k-module. Since f ∗ λ = f (1)λ for all f ∈ B∗, we
have that δ :

∫ l
B∗ →

∫ l
B∗ ⊗B : λ 7→ λ⊗ 1 satisfies the definition of rational module and we

have
∫ l
B∗ ⊆ B∗rat. In addition, we have in fact that

∫ l
B∗ ⊆ (B∗rat)coB, since δ coincides with

the restriction of the coaction of B∗rat to
∫ l
B∗ . Conversely, if f ∈ (B∗rat)coB then for every

g ∈ B∗ we have g ∗ f = ∑
f0g (f1) = g (1) f and hence f ∈

∫ l
B∗ , as claimed. �

Lemma 3.5. Assume that B is free or finitely generated and projective over k. An element
λ ∈ B∗ is a left integral on B if and only if ∑ b(1)λ

(
b(2)

)
= λ (b) 1 for all b ∈ B.

Proof. Clearly, f ∗ λ = ε∗ (f)λ for all f ∈ B∗ if and only if ∑ f
(
b(1)

)
λ
(
b(2)

)
= f (1)λ (b)

for all b ∈ B and f ∈ B∗, if and only if f
(∑

b(1)λ
(
b(2)

))
= f (1λ (b)). By the usual dual

basis trick, this holds if and only if ∑ b(1)λ
(
b(2)

)
= λ (b) 1 for all b ∈ B. �

If in addition B is a Hopf algebra with antipode S, then we can introduce the following
right B-action on B∗

(f ↽ b) (a) := f (aS (b))
for every a, b ∈ B and f ∈ B∗. Associativity and unitality follow from anti-multiplicativity
and unitality of S.

Theorem 3.6. Assume that H is a Hopf algebra which is free as a k-module. Then H∗rat

is a Hopf module with structures
µ : H∗rat ⊗H → H∗rat, f ⊗ b 7→ (f ↽ b) ,
δ : H∗rat → H∗rat ⊗H, f 7→

∑
f[0] ⊗ f[1].

Proof. We already know that δ makes of H∗rat a H-comodule. The proof of the fact that
the action is well-defined will be performed by resorting to a smart trick. Recall from
Lemma 2.12 that f ↽ b ∈ H∗rat if and only if there exists ∑ gi ⊗ bi ∈ H∗ ⊗ H such
that h ∗ (f ↽ b) = ∑

gih (bi) for all h ∈ H∗. If such an element exists, then we put
δ (f ↽ b) = ∑

gi ⊗ bi. However, here we are claiming that H∗rat is going to be not only a
H-module but a Hopf module, whence we may more easily check that the element∑

f[0] ↽ b(1) ⊗ f[1]b(2) ∈ H∗ ⊗H

satisfies the condition and this will tell us at the same time that f ↽ b ∈ H∗rat and that
this action is compatible with the coaction. Therefore, denote by ⇀ the usual left H-action
on H∗, that is to say, (b ⇀ f) (a) = f (ab) for all a, b ∈ H and f ∈ H∗. For every h ∈ H∗
let us compute(∑

f[0] ↽ b(1)h
(
f[1]b(2)

))
(a) =

∑
f[0]

(
aS

(
b(1)

))
h
(
f[1]b(2)

)
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=
∑

f[0]
(
aS

(
b(1)

)) (
b(2) ⇀ h

) (
f[1]
)

=
∑((

b(2) ⇀ h
)
∗ f
) (
aS

(
b(1)

))
=
∑(

b(2) ⇀ h
)(

a(1)S
(
b(1)

)
(1)

)
f
(
a(2)S

(
b(1)

)
(2)

)
=
∑(

b(3) ⇀ h
) (
a(1)S

(
b(2)

))
f
(
a(2)S

(
b(1)

))
=
∑

h
(
a(1)S

(
b(2)

)
b3
)
f
(
a(2)S

(
b(1)

))
=
∑

h
(
a(1)

)
f
(
a(2)S (b)

)
=
∑

h
(
a(1)

)
(f ↽ b)

(
a(2)

)
= (h ∗ (f ↽ b)) (a)

for all a ∈ H, whence ∑ f[0] ↽ b(1)h
(
f[1]b(2)

)
= h ∗ (f ↽ b) for all h ∈ H∗ and we are

done. �

As a consequence, we may apply the Structure Theorem for Hopf modules to claim that
for every free Hopf algebra H there exists an isomorphism of Hopf modules

(5)

ϑ :
∫ l
H∗ ⊗H oo // H∗rat

λ⊗ b � // (λ ↽ b)∑
f[0]S

(
f[1]
)
⊗ f[2] f�oo

Notice that this does not necessarily imply that
∫ l
B∗ 6= 0, as it is not necessarily true that

H∗rat 6= 0. The following examples will clarify the situation.

Example 3.7. Let (G, ·, 1) be a group and consider the group algebra H := kG = ⊕
g∈G keg.

This is a Hopf algebra (free over k) with

∆ (eg) = eg ⊗ eg, ε (eg) = 1, S (eg) = eg−1

for every g ∈ G. Consider the k-linear map e∗1 : H → k satisfying e∗1 (eg) = δ1,g. Let us
show that

∫ l
H∗ = ke∗1. On the one hand, for every f ∈ H∗ and g ∈ G we have

(f ∗ e∗1) (eg) = f (eg) e∗1 (eg) = f (eg) δ1,g = f (e1) δ1,g = f (e1) e∗1 (eg) = (f (e1) e∗1) (eg)

and hence f ∗ e∗1 = f (e1) e∗1 = ε∗ (f) e∗1. On the other hand, in light of Lemma 3.5, for every
λ ∈

∫ l
H∗ we have that

egλ (eg) =
∑

eg1λ (eg2) = 1λ (eg) = e1λ (eg) .

If g 6= 1 then eg and e1 are linearly independent and hence λ (eg) = 0. As a consequence,

λ (eg) = λ (eg) δ1,g = λ (e1) δ1,g = (λ (e1) e∗1) (eg)

for every g 6= 1. It clearly holds for g = 1 as well, whence λ = λ (e1) e∗1.
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Example 3.8. Let k be a field of characteristic 0 and H := k [X] be the polynomial algebra
with Hopf algebra structure given by

∆ (X) = X ⊗ 1 + 1⊗X, ε (X) = 0, S (X) = −X.

Let us show that
∫ l
B∗ = 0. Consider the following assignment

φ : H∗ → k [[Z]] : f 7→
∑
n≥0

f (Xn)
n! Zn.

This is an isomorphism of k-algebras with inverse given by
φ−1 : k [[Z]]→ H∗ :

∑
n≥0

knZ
n 7→ [Xn 7→ kn] .

Multiplicativity can be checked directly:

φ (f ∗ g) =
∑
n≥0

(f ∗ g) (Xn)
n! Zn =

∑
n≥0

 ∑
i+j=n

(
n

i

)
f (X i) g (Xj)

n!

Zn

=
∑
n≥0

 ∑
i+j=n

n!
i!j!

f (X i) g (Xj)
n!

Zn =
∑
n≥0

 ∑
i+j=n

f (X i)
i!

g (Xj)
j!

Zn

=
∑
i≥0

f (X i)
i! Zi

∑
j≥0

g (Xj)
j! Zj

 = φ (f)φ (g) .

Let now λ be a left integral on H, i.e. λ ∈
∫ l
B∗ . For every f ∈ H∗ we have f ∗ λ = f (1)λ

and, by applying φ to both sides,
φ (f)φ (λ) = f (1)φ (λ) = ev0 (φ (f))φ (λ) .

If we observe that k [[Z]] is an augmented algebra with augmentation ev0 : k [[Z]] → k,
then φ (λ) is a left integral in k [[Z]] (morphisms of augmented algebras send integrals to
integrals). In particular,

Zφ (λ) = ev0 (Z)φ (λ) = 0
from which we get that φ (λ) = 0, because k [[Z]] is an integral domain, and so λ = 0.

Example 3.9. Let (G, ·, 1) be a finite group and consider the element Λ := ∑
g∈G eg ∈ kG.

For every h ∈ G we have
ehΛ =

∑
g∈G

eheg =
∑
g∈G

eh·g.

Since G is a group, the assignment G → G : g 7→ h · g is bijective with inverse G → G :
g 7→ h−1 · g. Therefore, as sets, {eh·g | g ∈ G} = {eg | g ∈ G} and hence

ehΛ = Λ = ε(eh)Λ.
This proves that Λ is a left integral in kG. The same proof works to show that Λ is also a
right integral. Let Λ′ be any other left integral in kG. Observe that

ε (Λ) Λ′ = ΛΛ′ = ε (Λ′) Λ
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and that ε (Λ) = |G|. If k is a field whose characteristic does not divide |G|, then ε (Λ) 6= 0
and hence ε (Λ′) 6= 0 as well. We may also substitute Λ with Λ̃ := Λ/ε (Λ), so that ε

(
Λ̃
)

= 1
and so

Λ′ = ε
(
Λ̃
)

Λ′ = ε (Λ′) Λ̃ ∈ kΛ̃.

The foregoing examples are not restrictive. The following result (whose proof is omitted)
ensures that integrals are unique, at least over a field. A proof can be found in [1, Theorem
3.3.10], based on the paper [10].
Theorem 3.10. ( The uniqueness of integrals) Let k be a field and H a Hopf k-algebra.
Then

dimk

(∫ l

H∗

)
≤ 1.

4. Integrals and finite Hopf algebras

4.1. Existence of integrals. Let us begin by proving the existence of integrals for finitely
generated and projective Hopf algebras.
Theorem 4.1. ([12, Proposition 1.1]) Let H be a finitely generated and projective Hopf
algebra with dual basis ∑i ei ⊗ e∗i ∈ H ⊗H∗. Then for every h ∈ H the element

th :=
∑
i

ei(1)e
∗
i

(
S2
(
ei(2)

)
h
)

is a left integral in H. Moreover, at least one th is non-zero.
Proof. For every a ∈ H let us compute directly

ε (a) th =
∑
i

ei(1)e
∗
i

(
ε (a)S2

(
ei(2)

)
h
)

=
∑
i

ei(1)e
∗
i

(
a(1)S

(
a(2)

)
S2
(
ei(2)

)
h
)

=
∑
i,j

ei(1)e
∗
i

(
a(1)ej

)
e∗j
(
S
(
a(2)

)
S2
(
ei(2)

)
h
)

=
∑
j

(
a(1)ej

)
(1)
e∗j

(
S
(
a(2)

)
S2
((
a(1)ej

)
(2)

)
h
)

=
∑
j

a(1)ej(1)e
∗
j

(
S
(
a(3)

)
S2
(
a(2)ej(2)

)
h
)

=
∑
j

a(1)ej(1)e
∗
j

(
S
(
a(3)

)
S2
(
a(2)

)
S2
(
ej(2)

)
h
)

=
∑
j

a(1)ej(1)e
∗
j

(
S
(
S
(
a(2)

)
a(3)

)
S2
(
ej(2)

)
h
)

=
∑
j

aej(1)e
∗
j

(
S2
(
ej(2)

)
h
)

= ath.

This proves that th ∈
∫ l
H for every h ∈ H. Moreover,∑

k

e∗k (S (tek)) =
∑
k

e∗k

(
S

(∑
i

ei(1)e
∗
i

(
S2
(
ei(2)

)
ek
)))
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=
∑
k,i

e∗i
(
S2
(
ei(2)

)
ek
)
e∗k
(
S
(
ei(1)

))
=
∑
i

e∗i
(
S2
(
ei(2)

)
S
(
ei(1)

))
=
∑
i

e∗i
(
S
(
ei(1)S

(
ei(2)

)))
=
∑
i

ε (ei) e∗i (S (1)) = ε (S (1)) = 1

whence at least one tek has to be non-zero. �

Something more precise can be said if we are working over a field. Recall that if H is a
Hopf algebra which is finitely generated and projective over the commutative ring k, then
we already know that every H∗-module is rational. In particular, H∗rat = H∗ and Equation
(5) becomes ∫ l

H∗
⊗H ∼= H∗.

Lemma 4.2. For a finite-dimensional Hopf algebra H over a field k there exists a non-zero
integral λ on H such that

∫ l
H∗ = kλ.

Proof. A finite-dimensional Hopf algebra is in particular finitely generated and projective,
whence we have

∫ l
H∗ ⊗H ∼= H∗ as Hopf H-modules. The latter isomorphism is in particular

of k-vector spaces, whence by comparing the dimensions (dimk (H) = dimk (H∗)), we
conclude that dimk

(∫ l
H∗

)
= 1. �

Remark 4.3. Lemma 4.2 allows us to give a more conceptual proof of the fact that the space
of integrals in the group algebra kG over a finite group G is one-dimensional, which does
not use the hypothesis on the characteristic of the field k. Assume that f : H → H ′ is a
surjective Hopf algebra map and let t ∈

∫ l
H . For every h′ ∈ H ′ there exists h ∈ H such that

h′ = f (h) and hence h′f (t) = f (h) f (t) = f (ht) = ε (h) f (t) = ε (f (h)) f (t) = ε (h′) f (t).
This shows that f (t) ∈

∫ l
H′ , so that f induces

∫
f :

∫ l
H →

∫ l
H′ . Let H = kG. Since H is

finite-dimensional, we have an isomorphism of Hopf algebras H ∼= H∗∗. This entails that∫ l
H
∼=
∫ l
H∗∗ . Since H∗ is a Hopf algebra, Lemma 4.2 states exactly that

∫ l
H∗∗ = kλ for some

integral λ : H∗ → k.
4.2. Integrals, semisimplicity and separability. Let A be a k-algebra. A Casimir
element is an element ∑ e′ ⊗ e′′ ∈ A⊗A such that ∑ ae′ ⊗ e′′ = ∑

e′ ⊗ e′′a for every a ∈ A.
Denote by CA the k-module of all the Casimir elements. The algebra A is called separable if
there exists e ∈ CA such that ∑ e′e′′ = 1. In such a case e is called a separability idempotent
(it is idempotent in A⊗ Aop):

e2 =
(∑

e′ ⊗ e′′
) (∑

f ′ ⊗ f ′′
)

=
∑

e′f ′ ⊗ e′′ ·op f ′′ =
∑

e′f ′ ⊗ f ′′e′′

=
∑

e′e′′f ′ ⊗ f ′′ =
∑

f ′ ⊗ f ′′ = e.

We are going to see how integrals can be used to determine when a Hopf algebra is
semisimple or separable.
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Lemma 4.4. Let H be a Hopf algebra. We have the following maps

p : CH →
∫ l

H
: e 7→ e′ε (e′′) , p′ : CH →

∫ r

H
e 7→ ε (e′) e′′,

i :
∫ l

H
→ CH : t 7→

∑
t(1) ⊗ S

(
t(2)
)
, i′ :

∫ r

H
→ CH : t 7→

∑
S
(
t(1)
)
⊗ t(2),

satisfying p ◦ i = Id and p′ ◦ i′ = Id.
Proof. We only prove that p and i are well-defined. The other checks are analogous. First
of all, for every h ∈ H we have

he′ε (e′′) = e′ε (e′′h) = ε (h) e′ε (e′′) ,
whence p (e) is a left integral for every e ∈ CH . Secondly,∑

ht(1) ⊗ S
(
t(2)
)

=
∑

h(1)t(1) ⊗ S
(
t(2)
)
S
(
h(2)

)
h(3) =

∑
h(1)t(1) ⊗ S

(
h(2)t(2)

)
h(3)

=
∑(

h(1)t
)

(1)
⊗ S

((
h(1)t

)
(2)

)
h(2) =

∑
t(1) ⊗ S

(
t(2)
)
h,

whence i (t) ∈ CH for every t ∈
∫ l
H . �

Recall that a ring R is semisimple if every surjective morphism f : M → N of left
(equivalently, right) R-modules splits, that is to say, there exists a morphism σ : N →M of
left R-modules such that f ◦ σ = IdN .
Theorem 4.5. ( Maschke Theorem for Hopf algebras) For a Hopf algebra over a field k
the following assertions are equivalent.
(a) H is semisimple as a ring.
(b) There exists t ∈

∫ l
H such that ε (t) = 1.

(c) H is separable as an algebra.
Proof. To prove that (a) implies (b) consider the left H-linear morphism ε : H → k. Since H
is semisimple and ε is surjective, it admits a section left H-linear σ : k→ H. Set t := σ (1k)
and observe that for every h ∈ H we have ht = hσ (1k) = σ (h · 1k) = σ (ε (h) 1k) = ε (h) t
and that ε (t) = ε (σ (1k)) = 1k.

To prove that (b) implies (c) consider the Casimir element e = i (t) = ∑
t(1) ⊗ S

(
t(2)
)
.

Of course, ∑ t(1)S
(
t(2)
)

= ε (t) 1B = 1B, whence e is a separability idempotent.
Finally, to prove that (c) implies (a) let us proceed as follows. Pick any surjective

morphism of left H-modules π : M → N . Since it is in particular of k-vector spaces it admits
a k-linear section σ : N →M . Of course, σ is not H-linear in general, but we may consider
τ : N → M : n 7−→ ∑

e′σ (e′′n). This is H-linear because ∑ e′σ (e′′hn) = ∑
he′σ (e′′n) for

every h ∈ H and it is still a section since π (τ (n)) = ∑
π (e′σ (e′′n)) = ∑

e′π (σ (e′′n)) =∑
e′e′′n = n for every n ∈ N . �

Remark 4.6. An integral t such that ε (t) = 1 is called a total integral. Notice that if t is a
left integral for a Hopf algebra H then

S (t)h =
∑

S
(
h(1)t

)
h(2) =

∑
S (t)S

(
h(1)

)
h(2) = S (t) ε (h) ,



22 PAOLO SARACCO

so that S (t) is a right integral. It makes no sense to distinguish between left total integrals
and right total integrals because

t = ε (t) t = ε (S (t)) t = S (t) t = S (t) ε (t) = S (t) ,
so that they are both left and right integrals at the same time.

Theorem 4.7. (Villamayor-Zelinsky, 1966) A separable algebra over a field k is finite-
dimensional.

Proof. Let A be a separable k-algebra with (possibly infinite) basis {ei | i ∈ I} and let
e = ∑

αk ⊗ βk be a separability idempotent. For every i ∈ I define e∗i : A→ k by setting
e∗i (ej) = δi,j. Then, given any a ∈ A we may write a = ∑

i∈I(a) aiei with I (a) finite and
e∗k (a) = e∗k

(∑
i∈I(a) aiei

)
= ∑

i∈I(a) aie
∗
k (ei) = ak. Therefore, a = ∑

i∈I(a) e
∗
i (a) ei. Now, let

us compute

a = a1A =
∑
k

aαkβk =
∑
k

aαk

 ∑
i∈I(βk)

e∗i (βk) ei

 =
∑

k,i∈I(βk)
αkeie

∗
i (βka) .

This entails that a lives in the finite-dimensional subspace generated by the αkei’s. �

Corollary 4.8. A Hopf algebra over a field k satisfying any one of the equivalent conditions
of Theorem 4.5 is finite-dimensional.

Remark 4.9. Let us highlight some facts concerning Theorem 4.5.
(1) In light of Remark 4.6, in the proof of (2)⇒ (3) one could have considered e = i′ (t) =∑

S
(
t(1)
)
⊗ t(2) as well.

(2) The equivalence between (2) and (3) holds even when k is simply a commutative
ring. Indeed, the implication from (2) to (3) is proved exactly as above and to
prove that (3) implies (2) one observes that t = p (e) = ∑

e′ε (e′′) ∈
∫ l
H satisfies

ε (t) = ∑
ε (e′ε (e′′)) = ε (∑ e′e′′) = 1k.

(3) Every separable algebra over a field is semisimple, by the same proof of (3) ⇒ (1).
However, the converse is not true in general: the real numbers R form a semisimple
ring (since they form a field), which is not separable as a Q-algebra because is not
finite-dimensional. Even if A is a finite-dimensional semisimple k-algebra, it may
happen that A is not separable.

Exercise 4.10. Let p be a prime number and consider the field k := Zp (Y ), that is, the field
of fractions of Zp [Y ]. Consider the polynomial q (X) := Xp−Y ∈ k [X]. It is irreducible in
k [X] by Eisenstein and Gauss: the ideal 〈Y 〉 ⊆ Zp [Y ] is prime (in fact, maximal, since the
quotient Zp [Y ] / 〈Y 〉 ∼= Zp is a field), Y ∈ 〈Y 〉 and Y /∈ 〈Y 2〉, whence q (X) is irreducible
in (Zp [Y ]) [X] by Eisenstein and it is irreducible in k [X] by Gauss. The quotient k-algebra
A := k [X] / 〈p (X)〉 is then a field and as such it is semisimple. However, it is not separable.

Theorem 4.11. (Maschke Theorem for groups) Let k be a field. The following are equivalent
for a group G
(a) kG as a ring is semisimple.



NOTES ON HOPF MODULES, INTEGRALS AND FROBENIUS HOPF ALGEBRAS. 23

(b) G is finite and char (k) - |G|.
(c) kG as an algebra is separable.

Proof. Since kG is a Hopf algebra, in light of Theorem 4.5 it will be enough to prove
that G is finite and char (k) - |G| if and only if kG has a total integral. Recall from
Example 3.9 that if G is finite and char (k) - |G| then Λ := 1

|G|
∑
g∈G eg is a total integral.

Conversely, set e := ∑
g∈G eg and assume that kG admits a total integral t. By (b) ⇒ (c)

in Theorem 4.5 it follows that kG is finite-dimensional and hence G is finite. Moreover,
e = eε (t) = et = ε (e) t = |G| t entails that |G| cannot be 0 as e is not 0. Thus char (k) - |G|
and the proof is finished. �

Remark 4.12. It may be of interest to note that if the equivalent conditions of Theorem 4.11
then a total integral for kG is provided by Λ := 1

|G|
∑
g∈G eg and a separability idempotent

by e = 1
|G|
∑
g∈G eg ⊗ eg−1 .

4.3. Integrals and Frobenius property. An algebra A is called Frobenius if there exists
a Casimir element e ∈ CA and a linear operator ν ∈ A∗ (called the Frobenius homomorphism)
such that

(A⊗ ν) (e) = 1 = (ν ⊗ A) (e) .
We call the pair (ν, e) a Frobenius system for A. Recall that for a k-algebra A, A∗ is always
an A-bimodule via

(a ⇀ f ↼ b) (x) = f (bxa)
for every a, b, x ∈ A and f ∈ A∗. Recall also that a bilinear form β : A× A→ k is said to
be associative if β (ab, c) = β (a, bc) and it is said to be non-degenerate if the assignment
a 7→ β (−, a) provides an isomorphism A→ A∗.

Proposition 4.13. For a k-algebra A the following assertions are equivalent
(a) A is Frobenius,
(b) There exists e = ∑

e′ ⊗ e′′ ∈ A ⊗ A and ν ∈ A∗ such that a = ∑
e′ν (e′′a) for every

a ∈ A,
(c) There exists e = ∑

e′ ⊗ e′′ ∈ A⊗ A and ν ∈ A∗ such that a = ∑
ν (ae′) e′′ for every

a ∈ A,
(d) A is finitely generated and projective as a k-module and A ∼= A∗ as left A-modules,
(e) A is finitely generated and projective as a k-module and A ∼= A∗ as right A-modules,
(f) A is finitely generated and projective as a k-module and there exists a non-degenerate

bilinear form β : A× A→ k.

Proof. To prove that (a) implies (b) notice that for every a ∈ A we have
a =

∑
ae′ν (e′′) =

∑
e′ν (e′′a)

because e is Casimir. To prove that (b) implies (d) observe that a = ∑
e′ν (e′′a) for every

a ∈ A entails that A is finitely generated and projective with dual basis ∑ e′ ⊗ (ν ↼ e′′).
In particular, for every f ∈ A∗ we have f = ∑

f (e′) (ν ↼ e′′). Consider
φ : A∗ → A : f 7→

∑
e′f (e′′) ,
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ψ : A→ A∗ : b 7→ [(b ⇀ ν) : a 7→ ν (ab)] .
Since for every a, b, c ∈ A we have

ψ (bc) (a) = ν (abc) = (c ⇀ ν) (ab) = (b ⇀ (c ⇀ ν)) (a) = (b ⇀ ψ (c)) (a) ,
it is clear that ψ is left A-linear. Moreover,

a
ψ7−→ (a ⇀ ν) φ7−→

∑
e′ (a ⇀ ν) (e′′) =

∑
e′ν (e′′a) = a

so that φ ◦ ψ is the identity. To show that this is enough to claim that they are each other
inverses, proceed as follows. If k is a field, then comparing dimensions allows us to conclude
that ψ has to be surjective as well and hence invertible. If k is a commutative local ring
with unique maximal ideal m then consider

φ : A∗

A∗m
→ A

Am
, f + A∗m 7→

∑
e′f (e′′) + Am,

ψ : A

Am
→ A∗

A∗m
, a+ Am 7−→ (a ⇀ ν) + A∗m.

These are well-defined because φ, ψ are k-linear (ψ = ψ ⊗ k
m

) and φ ◦ ψ = φ ◦ ψ is the
identity. Since now k/m is a field and since A∗/A∗m ∼= A∗ ⊗k k/m ∼= Homk (A, k/m) ∼=
Homk/m (A⊗ k/m,k/m) ∼= (A/Am)∗, we conclude that ψ is an isomorphism. Therefore, for
every f ∈ A∗ there exists a ∈ A, g ∈ A∗ and k ∈ m such that f = ψ (a) + gk, which implies
that [f ] = [g] k ∈ X := A∗/im (ψ) and so X = Xm. Since X is finitely generated (because
A∗ is), Nakayama’s lemma implies that X = 0 and hence ψ is surjective. Finally, let k be
commutative and for every prime ideal p ⊆ k consider

φp : A∗p → Ap and ψp : Ap → A∗p

the localizations at p of φ and ψ. Since φp ◦ ψp = (φ ◦ ψ)p is the identity, we conclude
that ψp is an isomorphism for every prime ideal p and hence ψ is an isomorphism of left
A-modules with inverse φ.

To prove that (d) implies (f) consider a left A-linear isomorphism ψ : A → A∗ and
set ν := ψ (1). Since ψ is A-linear, ψ (a) = a ⇀ ν for every a ∈ A. If we consider the
assignment

β : A× A→ k : (a, b) 7→ ν (ab) ,
then it obviously provides a bilinear form such that β (ab, c) = ν ((ab) c) = ν (a (bc)) =
β (a, bc), whence it is associative. Moreover, the assignment a 7→ β (−, a) = a ⇀ ν coincides
with ψ and hence it is an isomorphism, so that β is non-degenerate.

To prove that (f) implies (d) consider the k-linear isomorphism ψ : A→ A∗ : a 7→ β (−, a).
Since ψ (ab) (x) = β (x, ab) = β (xa, b) = ψ (b) (xa) = (a ⇀ ψ (b)) (x) for every a, b, x ∈ A,
we conclude that ψ is also left A-linear.

Finally, to prove that (d) implies (a) suppose that φ : A∗ → A is a left A-linear
isomorphism with inverse ψ. Let {ei, e∗i } be a dual basis of A and set yi := φ (e∗i ), ν = ψ (1).
Then, ψ (a) = a ⇀ ψ (1) = a ⇀ ν for all a ∈ A and e∗i = ψ (yi) = yi ⇀ ν, whence

a =
∑

e∗i (a) ei =
∑

(yi ⇀ ν) (a) ei =
∑

ν (ayi) ei.
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For a = 1 we get 1 = ∑
ν (yi) ei. On the other hand

ν =
∑

e∗i ν (ei) =
∑

(yi ⇀ ν) ν (ei) =
(∑

yiν (ei)
)
⇀ ν

from which it follows that
1 = φ (ν) = φ

((∑
yiν (ei)

)
⇀ ν

)
=
∑

yiν (ei)φ (ν) =
∑

yiν (ei) .
We are left to prove that ∑ yi ⊗ ei is a Casimir element. To this aim, compute∑

yi ⊗ eia =
∑

φ (e∗i )⊗ e∗k (eia) ek =
∑

φ (e∗i e∗k (eia))⊗ ek
=
∑

φ (e∗i (a ⇀ e∗k) (ei))⊗ ek =
∑

φ (a ⇀ e∗k)⊗ ek
=
∑

(a ⇀ φ (e∗k))⊗ ek =
∑

(a ⇀ yk)⊗ ek.
Summing up, we showed that (d) ⇐⇒ (f) and that (a) =⇒ (b) =⇒ (d) =⇒ (a), proving
in this way that (a) ⇐⇒ (b) ⇐⇒ (d) ⇐⇒ (f). The proof that (a) ⇐⇒ (c) ⇐⇒ (e)
⇐⇒ (f) is completely analogous. �

Remark 4.14. By analizing closely the chain of implications (2) =⇒ (4) =⇒ (1) in the
proof of Proposition 4.13, we can see that ν becomes the Frobenius homomorphism and
e = ∑

e′ ⊗ e′′ becomes the Casimir element.

Definition 4.15. For an augmented Frobenius algebra A with Frobenius homomorphism
ν, an element n ∈ A such that n ⇀ ν = ε is called a left norm. Analogously, an element
N ∈ A such that ν ↼ N = ε is called a right norm.

Remark 4.16. Let A be an aumented Frobenius algebra A with Frobenius homomorphism ν
and set ψ : A→ A∗ : b 7−→ (b ⇀ ν). For a left norm n, n ∈

∫ l
B. In fact, for every a, b ∈ B

we have ν (ban) = ε (ba) = ε (a) ν (bn) = ν (bε (a)n), that is to say, ψ (an) = ψ (ε (a)n) for
every a ∈ B, which implies that an = ε (a)n. Analogously, given a right norm N we can
show that N ∈

∫ r
B.

Proposition 4.17. ([8, Proposition 3]) For a finitely generated and projective Hopf k-
algebra H,

∫ l
H∗ is a finitely generated and projective k-module of constant rank one.

Proof. The fact that
∫ l
H∗ is finitely generated and projective follows from the fact that it is

a direct summand of H∗, which is finitely generated and projective. Let us prove that it is
of rank 1. For every prime ideal p of H we have

H∗p
∼=
(∫ l

H∗
⊗kH

)
p

∼=
(∫ l

H∗

)
p

⊗kp Hp

(see [3, Proposition 3.7]). Since all the three k-modules are finitely generated and projective
over k, their localizations at p are finitely generated and projective as kp-modules and hence
free of finite rank (because kp is a local ring).

Since Hp
∼= H∗p as free kp-modules of finite rank, it follows that

(∫ l
H∗

)
p

has to be free of
rank one for every prime ideal p of H.

�
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The following is another useful consequence of the Structure Theorem for Hopf Modules.

Proposition 4.18. The antipode of a finitely generated and projective Hopf algebra is
bijective.

Proof. Recall that in light of the Structure Theorem we know that

εH∗ :
∫ l

H∗
⊗H → H∗ :

∑
i

λi ⊗ hi 7−→
∑
i

(λi ↽ hi)

is an isomorphism of Hopf modules. Assume firstly that k is a local ring with unique
maximal ideal m. Then H∗ ∼=

∫ l
H∗ ⊗H implies that

∫ l
H∗ is free of rank 1 as a k-module,

generated by some λ. If h ∈ ker (S), then εH∗ (λ⊗ h) = λ ↽ h = S (h) ⇀ λ = 0 implies
that λ⊗ h = 0 and hence h = 0. Therefore S is injective. To prove that it is also surjective
observe that H = H/mH is a finite-dimensional k = k/m-vector space and that the Hopf
algebra structure passes to the quotient, making of H a finite-dimensiomnal k-Hopf algebra.
Snake lemma shows that S is injective and hence it is bijective by comparing dimensions.
In particular, for every h ∈ H there exists x, y ∈ H and k ∈ m such that h = S (x) + ky.
Call X := H/im (S). In X we have that [h] = k [y], whence X = mX. Since X is clearly
finitely generated, we may apply Nakayama’s Lemma to claim that X = 0 and hence S is
surjective as well.

Let k be again a commutative ring. For every prime ideal p ∈ k, the localization
Hp
∼= kp ⊗H is still a finitely generated and projective Hopf algebra over kp (localization is

an exact functor: if H is direct summand of a free k-module, Hp is direct summand of a
free kp-module), which now is a local commutative ring. This means that the localization
Sp of the antipode at any prime ideal is bijective. Since being injective, surjective and
hence bijective is a local property ([3, Proposition 3.9]), this means that S is bijective as
claimed. �

Remark 4.19. For the case of finite-dimensional Hopf algebras over a field. The proof is
much easier. Let S be the antipode of H and let h ∈ ker (S). By definition, for every x ∈ H
we have

(λ ↽ h) (x) = λ (xS (h)) = 0,
whence λ ↽ h = 0. However, ϑ of Equation 5 is an isomorphism and 0 = λ ↽ h = ϑ (λ⊗ h)
implies that λ⊗ h = 0 and since λ 6= 0, we have that h = 0. Therefore, S is injective and
by comparing dimensions it has to be bijective.

The forthcoming Theorem 4.22 is the main result of this section, but before proving it,
we need to prove a technical lemma.

Lemma 4.20. ([6]) The k-module of left (equivalently, right) integrals in an augmented
Frobenius algebra is free of rank one.

Proof. Let A be a Frobenius augmented algebra with Frobenius morphism ν and consider
a left norm n ∈ A. Given a non-zero left integral t ∈ A, note that

t ⇀ ν = ν (t) ε = ν (t)n ⇀ ν
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so that t = ν (t)n by bijectivity of ψ : A→ A∗ : a 7−→ (a ⇀ ν). This implies that
∫ l
A ⊆ kn

and so
∫ l
A = kn, since n is a left integral in A. Let us prove that the latter is also free as a

k-module. Assume that k ∈ k is such that kn = 0. Then 0 = ν (kn) = kν (n) = k. �

Remark 4.21. Between all left norms, we have a kind of distinguished one. Consider the
Frobenius isomorphism ψ : A → A∗ : a 7−→ (a ⇀ ν) and consider n := ψ−1 (ε). Then for
every a ∈ A we have ν (n) = (ψ−1 (ε) ⇀ ν) (1) = ε (1) = 1 and

(n ⇀ ν) (a) = ν
(
aψ−1 (ε)

)
= ν

(
ψ−1 (a ⇀ ε)

)
= ε (a) ν

(
ψ−1 (ε)

)
= ε (a) .

Theorem 4.22. ([8]) For a bialgebra B the following are equivalent:
(a) B is a finitely generated and projective k-Hopf algebra and

∫ l
H∗ is free of rank one;

(b) B is a Frobenius k-algebra with ν ∈
∫ l
H∗.

Proof. To prove that (a) implies (b) assume that
∫ l
H∗
∼= kν for some ν ∈

∫ l
B∗ and recall that

we have an B-Hopf module isomorphism

εB∗ :
∫ l

B∗
⊗B ∼= B∗ : ν ⊗ a 7−→ (ν ↽ a) = (S (a) ⇀ ν)

Since S is invertible (Proposition 4.18), we may consider the k-linear isomorphism B →∫ l
B∗ ⊗B → B∗ : a 7−→ ν ⊗ S−1 (a) 7−→ (ν ↽ S−1 (a)) = (a ⇀ ν) and it is clear that the

latter is left B-linear, whence B is Frobenius, and that ν is the Frobenius homomorphism.
Conversely, to prove that (b) implies (a) proceed as follows. We already know that
B is finitely generated and projective and that we have a left B-linear isomorphism
ψ : B → B∗ : a 7−→ (a ⇀ ν). Pick a left norm n ∈ B and consider the assignment

s : B → B : a 7−→
∑

n(1)ν
(
an(2)

)
.

Since both n and ν are left integrals, it follows from Lemma 3.5 that ∑n(1)ν
(
n(2)

)
=

ν (n) 1 = 1 and hence that ∑ a(1)s
(
a(2)

)
= ∑

a(1)n(1)ν
(
a(2)n(2)

)
= ε (a)∑n(1)ν

(
n(2)

)
=

ε (a) 1. Thus s is right convolution inverse of the identity. To prove that it is also a left
convolution inverse, there are two ways: the first one is to apply [8, Lemma 4] as it is done
in [8, Theorem 2] to conclude that it is. Otherwise, notice that ψ′ : B → B∗ : a 7−→ (ν ↼ a)
is now a right B-linear isomorphism with inverse f 7−→ ∑

f (e′) e′′.
Pick a right norm N ∈ B and consider the map s′ : B → B : a 7−→ ∑

N(1)ν
(
N(2)a

)
.

This satisfies
s′ (s (a)) = s′

(∑
n(1)ν

(
an(2)

))
=
∑

N(1)ν
(
N(2)n(1)ν

(
an(2)

))
=
∑

N(1)ν
(
N(2)n(1)

)
ν
(
an(2)

)
=
∑

N(1)a(1)ν
(
N(2)a(2)n(1)

)
ν
(
a(3)n(2)

)
=
∑

N(1)aν
(
N(2)n(1)

)
ν
(
n(2)

)
=
∑

N(1)ν
(
N(2)

)
a = a,

s (s′ (a)) = s
(∑

N(1)ν
(
N(2)a

))
=
∑

n(1)ν
(
N(1)ν

(
N(2)a

)
n(2)

)
=
∑

n(1)ν
(
N(1)n(2)

)
ν
(
N(2)a

)
=
∑

a(1)n(1)ν
(
N(1)a(2)n(2)

)
ν
(
N(2)a(3)

)
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=
∑

an(1)ν
(
N(1)ν

(
N(2)

)
n(2)

)
=
∑

an(1)ν
(
n(2)

)
= a,

that is to say, s′ is the inverse of s. Moreover, observe that∑
n(1)ν

(
bn(2)

)
n′(1)ν

(
an′(2)

)
=
∑

n(1)n
′
(1)ν

(
aν
(
bn(2)

)
n′(2)

)
(6) (

ν∈
∫ l
B∗

)
=

∑
n(1)n

′
(1)ν

(
ab(1)n(2)ν

(
b(2)n(3)

)
n′(2)

)
(
n∈
∫ l
B

)
=

∑
n(1)n

′
(1)ν

(
ab(1)n(2)n

′
(2)

)
ν
(
b(2)n(3)

)
(
n∈
∫ l
B

)
=

∑
n′(1)ν

(
ab(1)n

′
(2)

)
ν
(
b(2)n

)
=
∑

n′(1)ν
(
abn′(2)

)
ν (n)

=
∑

n′(1)ν
(
abn′(2)

)
.

Compute now∑
s
(
a(1)

)
a(2) =

∑
n(1)ν

(
a(1)n(2)

)
a(2)

=
∑

n(1)ν
(
a(1)n(2)

)
n′(1)ν

(
N(1)ν

(
N(2)a(2)

)
n′(2)

)
(6)=
∑

n(1)ν
(
N(1)ν

(
N(2)a(2)

)
a(1)n(2)

)
=
∑

n(1)ν
(
N(1)a(1)ν

(
N(2)a(2)

)
n(2)

)
(N∈

∫ r
B
)

=
∑

n(1)ν
(
N(1)ν

(
N(2)

)
n(2)

)
ε (a)(

ν∈
∫ l
B∗

)
=

∑
n(1)ν

(
n(2)

)
ε (a)(

ν∈
∫ l
B∗

)
= ε (a) 1

and the proof that s is an antipode is complete. We are left to check that
∫ l
H∗ is free of rank

one. First of all, recall that H∗ is still a Hopf algebra with antipode s∗ and that ν ∈
∫ l
H∗ .

Therefore i (ν) = ∑
ν(1) ⊗ s∗

(
ν(2)

)
is a Casimir element for H∗. Observe also that

s (N) =
∑

n(1)ν
(
Nn(2)

)
=
∑

n(1)ε
(
n(2)

)
ν (N) = n

because N is a right integral. Thus, evN ∈
∫ l
H∗∗ in light of Remark 4.3 and∑

evN
(
ν(1)

)
s∗
(
ν(2)

)
= s∗

(∑
ν(1) (N) ν(2)

)
= s∗ (ν ↼ N) = s∗ (ε) = ε,∑

ν(1)evN
(
s∗
(
ν(2)

))
=
∑

ν(1)s
∗
(
ν(2)

)
(N) =

∑
ν(1)ν(2) (s (N))

= s (N) ⇀ ν = n ⇀ ν = ε,
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which means that evN is a Frobenius homomorphism for H∗. Therefore, we may apply
Lemma 4.20 to conclude that

∫ l
H∗ has to be free of rank one. �

From the proof of Theorem 4.22 it is clear that if B is a bialgebra which is Frobenius
as an algebra and such that ν ∈

∫ l
B∗ , then an antipode for B is given explicitly by

s (a) := ∑
n(1)ν

(
an(2)

)
and its inverse by s−1 (a) = ∑

N(1)ν
(
N(2)a

)
, where n is a left norm

and N a right norm. Moreover,
∫ l
B∗ is the free k-module generated by ν. Conversely, assume

that we know that B is a Frobenius Hopf algebra and that we know a (free) generator ϕ of∫ l
B∗ . We want to answer to the following questions:
• How do we find a generator for

∫ l
B?

• Can we explicit describe a Frobenius homomorphism and a Casimir element for B?
• What is the inverse of the isomorphism ψ : B → B∗ : b 7−→ (b ⇀ ϕ)?

Proposition 4.23. Let H be a Frobenius Hopf algebra with (free) generator ϕ of
∫ l
B∗. Then

ψ : B → B∗ : b 7−→ (b ⇀ ϕ) is a left H-linear isomorphism, t := ψ−1 (ε) is a free generator
of
∫ l
B and

ψ−1 : B∗ → B : f 7−→
∑

f
(
S−1

(
t(1)
))
t(2).

Moreover,
(
ϕ,
∑
t(2) ⊗ S−1

(
t(1)
))

is a Frobenius system for H.

Proof. If B is a finitely generated and projective Hopf algebra and ϕ ∈
∫ l
B∗ is a free generator,

we have a right B-linear isomorphism γ : B → B∗ : b 7−→ (S (b) ⇀ ϕ) which induces a left
B-linear isomorphism ψ : B → B∗ : b 7−→ γ (S−1 (b)). We already know from Lemma 4.20
and Remark 4.21 that t := ψ−1 (ε) is a free generator of

∫ l
B. Consider the Casimir element∑

t(2) ⊗ S−1
(
t(1)
)

and compute∑
ϕ
(
at(2)

)
S−1

(
t(1)
)

=
∑

ϕ
(
t(2)
)
S−1

(
t(1)
)
a = S−1

(∑
t(1)ϕ

(
t(2)
))
a = ϕ (t)S−1 (1) a = a.

Thus, in light of (3) =⇒ (1) from Proposition 4.13 we conclude that a Frobenius homomor-
phism for B is given by ϕ and an associated Casimir element by ∑ t(2) ⊗ S−1

(
t(1)
)
. �

Theorem 4.24. For a Hopf algebra H, the following assertions are equivalent
(a) H is Frobenius over k;
(b) H is finitely generated and projective and H∗ is Frobenius over k;
(c) H is finitely generated and projective and

∫ l
H is free of rank one;

(d) H is finitely generated and projective and
∫ r
H is free of rank one;

(e) H is finitely generated and projective and
∫ l
H∗ is free of rank one;

(f) H is finitely generated and projective and
∫ r
H∗ is free of rank one.

Proof. The implication from (a) to (c) is the content of Lemma 4.20. The implication
from (a) to (b) is already contained in the second part of the proof of Theorem 4.22. The
equivalence between (a) and (e) is the content of Theorem 4.22. By recalling that H ∼= H∗∗

and that
∫ l
H
∼=
∫ l
H∗∗ ,

∫ r
H
∼=
∫ r
H∗∗ , we see that the equivalence between (b) and (c) is again

Theorem 4.22 applied to H∗. Since the antipode is invertible and since it maps left integrals
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to right integrals (and conversely) by Remark 4.6, we have that (c) ⇐⇒ (d) and (e) ⇐⇒
(f). Finally, the implication from (b) to (e) is the same as the implication from (a) to (c)
but applied to H∗. �

Remark 4.25. It may sound redundant, but the additional hypothesis that H is finitely
generated and projective in point (b) is necessary. Being H∗ Frobenius tells us that H∗ is
finitely generated and projective, but this does not imply that H is finitely generated and
projective in general.

Exercise 4.26. Prove that HomZ (Q,Z) = 0 (whence it is finitely generated and projective).
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